The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins

نویسندگان

  • X Renee Bina
  • Mondraya F Howard
  • Dawn L Taylor-Mulneix
  • Vanessa M Ante
  • Dillon E Kunkle
  • James E Bina
چکیده

Resistance-nodulation-division (RND) efflux systems are ubiquitous transporters in Gram-negative bacteria that are essential for antibiotic resistance. The RND efflux systems also contribute to diverse phenotypes independent of antimicrobial resistance, but the mechanism by which they affect most of these phenotypes is unclear. This is the case in Vibrio cholerae where the RND systems function in antimicrobial resistance and virulence factor production. Herein, we investigated the linkage between RND efflux and V. cholerae virulence. RNA sequencing revealed that the loss of RND efflux affected the activation state of periplasmic sensing systems including the virulence regulator ToxR. Activation of ToxR in an RND null mutant resulted in ToxR-dependent transcription of the LysR-family regulator leuO. Increased leuO transcription resulted in the repression of the ToxR virulence regulon and attenuated virulence factor production. Consistent with this, leuO deletion restored virulence factor production in an RND-null mutant, but not its ability to colonize infant mice; suggesting that RND efflux was epistatic to virulence factor production for colonization. The periplasmic sensing domain of ToxR was required for the induction of leuO transcription in the RND null mutant, suggesting that ToxR responded to metabolites that accumulated in the periplasm. Our results suggest that ToxR represses virulence factor production in response to metabolites that are normally effluxed from the cell by the RND transporters. We propose that impaired RND efflux results in periplasmic metabolite accumulation, which then activates periplasmic sensors including ToxR and two-component regulatory systems to initiate the expression of adaptive responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrio cholerae vexH Encodes a Multiple Drug Efflux Pump That Contributes to the Production of Cholera Toxin and the Toxin Co-Regulated Pilus

The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance ...

متن کامل

The Vibrio cholerae VexGH RND Efflux System Maintains Cellular Homeostasis by Effluxing Vibriobactin

Resistance-nodulation-division (RND) superfamily efflux systems have been widely studied for their role in antibiotic resistance, but their native biological functions remain poorly understood. We previously showed that loss of RND-mediated efflux in Vibrio cholerae resulted in activation of the Cpx two-component regulatory system, which mediates adaptation to stress resulting from misfolded me...

متن کامل

Substrate-Dependent Activation of the Vibrio cholerae vexAB RND Efflux System Requires vexR

Vibrio cholerae encodes six resistance-nodulation-division (RND) efflux systems which function in antimicrobial resistance, virulence factor production, and intestinal colonization. Among the six RND efflux systems, VexAB exhibited broad substrate specificity and played a predominant role in intrinsic antimicrobial resistance. The VexAB system was encoded in an apparent three gene operon that i...

متن کامل

Reciprocal regulation of resistance-nodulation-division efflux systems and the Cpx two-component system in Vibrio cholerae.

The Cpx two-component regulatory system has been shown in Escherichia coli to alleviate stress caused by misfolded cell envelope proteins. The Vibrio cholerae Cpx system was previously found to respond to cues distinct from those in the E. coli system, suggesting that this system fulfills a different physiological role in the cholera pathogen. Here, we used microarrays to identify genes that we...

متن کامل

Disulfide Bond Formation and ToxR Activity in Vibrio cholerae

Virulence factor production in Vibrio cholerae is complex, with ToxRS being an important part of the regulatory cascade. Additionally, ToxR is the transcriptional regulator for the genes encoding the major outer membrane porins OmpU and OmpT. ToxR is a transmembrane protein and contains two cysteine residues in the periplasmic domain. This study addresses the influence of the thiol-disulfide ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018